UNPACKING the TEKS $\mid \Theta$ A. $10(\mathrm{~A})$, A. $10(\mathrm{~B})$, A. $10(\mathrm{D})$

A polynomial is an expression that contains two or more terms. For example, $3 x^{2}+6 y-7$ is a polynomial. Its terms are $3 x^{2}, 6 y$, and -7 . A term can be a constant or an algebraic term containing a variable. An algebraic term may contain a coefficient (the number before the variable) and an exponent (such as the exponent 2 in $3 x^{2}$).

You can perform operations, such as addition, subtraction, and multiplication, on polynomials.

Words to Know

polynomial
variable
coefficient
exponent
like terms
Distributive Property

GUIDED PRACTICE

To add and subtract polynomials, combine like terms. Like terms have the same variable and exponent. For example, $2 x$ and $-4 x$ are like terms, but $2 x$ and x^{2} are not like terms. Adding $2 x$ and $-4 x$ results in $-2 x$. Adding $2 x$ and x^{2} results in $x^{2}+2 x$.

Problem $1 \quad$ Add $2 x-5$ and $4 x+3$

Step $1 \quad$ Collect like terms.

$$
(2 x-5)+(4 x+3)=(2 x+4 x)+(-5+3)
$$

- Step 2 Add or subtract to combine like terms.

$$
(2 x+4 x)+(-5+3)=
$$

\qquad

$$
(2 x-5)+(4 x+3)=
$$

\qquad

To multiply polynomials, use the Distributive Property. To multiply binomials, remember the acronym FOIL: Multiply the First terms in each binomial, then the Outer terms, then the Inner terms, and then the Last terms.

Problem $2 \quad$ Simplify $(-2 y)\left(3 y^{2}-4\right)$.
Step 1 Use the Distributive Property.

$$
(-2 y)\left(3 y^{2}-4\right)=(-2 y)\left(3 y^{2}\right)+(-2 y)(\square)
$$

Step $2 \quad$ Simplify $(-2 y)\left(3 y^{2}\right)$.
$(-2 y)\left(3 y^{2}\right)=(-2)(3)(y)\left(y^{2}\right)=$ \qquad

Step 3
 Solution

Simplify $(-2 y)(-4)$.
$(-2 y)(-4)=(-2)(-4)(y)=$ \qquad
$(-2 y)\left(3 y^{2}-4\right)=$

Problem 3 Simplify $(4 x+5)(2 x-3)$.
Step 1 Use FOIL. Multiply the first term in each binomial.
$(4 x)(2 x)=$ \qquad

- Step 2

Multiply the outer terms: the first term in the first binomial by the second term in the second binomial.
$(4 x)(-3)=$ \qquad

Step 3 Multiply the inner terms: the second term in the first binomial by the first term in the second binomial.
(5) $(2 x)=$ \qquad

Step 4 Multiply the last term in each binomial.
$(5)(-3)=$ \qquad

Step $5 \quad$ Add the products and combine like terms.
Solution
So $(4 x+5)(2 x-3)=$ \qquad

SHORT RESPONSE QUESTIONS

1. Write $2 x^{2}(x-2)+4 x(x+2)-2(x-3)$ as a simplified polynomial. Show or explain your work.

2. The length of a rectangular garden is $4 x+3$ and its width is $3 x-1$.

Part A What is the area of the garden? Show or explain your work.

Part B What is the perimeter of the garden? Show or explain your work.

\star PRACTICE

DIRECTIONS Read and answer each question carefully.

1 The distance from Point A to Point B is $5 x^{2}+3$ miles. The distance from Point B to Point C is $10-2 x^{2}$ miles. The distance from Point C to Point D is 4 miles.

If Mike walks from Point A to Point B, then to Point C, and finally to Point D, which expression represents the total distance he travels in miles?
(A) $3 x^{2}-3$
(C) $7 x^{2}+7$
(B) $3 x^{2}+17$
(D) $-10 x^{4}$
120

2 Which of the following expressions is equivalent to $(y+3)-(-3 y-5)$?
(A) $4 y+8$
(C) $-2 y-2$
(B) $2 y+8$
(D) $4 y-2$

5 Which expression is equivalent to $y^{2}(2 y+3)+3 y(y-5) ?$
(A) $2 y^{3}-15$
(C) $2 y^{3}+15 y$
(B) $2 y^{3}+6 y^{2}-15 y$
(D) $2 y^{3}+15$

6 Judy bought a pair of jeans for x dollars and a T-shirt for $\$ 10$. The sales tax was 7%. Judy wrote the expression below to represent the total amount she paid.

$$
x+10+0.07(x+10)
$$

Which expression is equivalent to Judy's expression?
(A) $0.07 x+0.7$
(C) $1.07 x+10.7$
$1.07 x+20$
(D) $x+10.7$

7 Which expression is equivalent to
$(3 x-2)(2 x+7) ?$
3 The time it takes to wash one window on a building is represented by $4 a^{2}-5$.

Which expression shows the time it takes to wash the windows on the building if there are 3a windows?
(A) $12 a^{2}-15 a$
(C) $7 a^{3}-15 a^{3}$
(B) $12 a^{2}-15$
(D) $12 a^{3}-15 a$

4 What is the product of $\left(2 x^{2}-3 x+1\right)$ and $(-4 x)$?
(A) $-8 x^{3}-12 x^{2}-4 x$
(B) $-8 x^{3}+12 x^{2}-4 x$
(C) $4 x^{2}-4 x$
(D) $-8 x^{3}-12 x^{2}+4 x$
(A) $6 x^{2}+25 x-14$
(B) $6 x^{2}+17 x+14$
(C) $6 x^{2}-17 x-14$
(D) $6 x^{2}+17 x-14$

8 The lengths of the sides of a triangle are represented by $2 x^{2}+3, x^{2}+2 x$, and $5 x-8$.

What is the perimeter of the triangle?
(A) $3 x^{2}+7 x-5$
(B) $3 x^{2}+7 x+5$
(C) $8 x^{2}+2 x-5$
(D) $3 x^{2}+2 x-5$

\star ASSESSMENT

DIRECTIONS Read and answer each question carefully.

1 Which of the following expressions are equivalent to $(2 x+3)\left(x^{2}-7\right)$?

Select TWO correct answers.
(A) $2 x^{3}-21$
(B) $2 x^{3}+3 x^{2}-21$
(C) $2 x^{3}-11 x^{2}-21$
(D) $2 x^{3}+3 x^{2}-14 x-21$
(E) $(2 x+3)\left(x^{2}\right)-(2 x+3)(7)$

2 The time it took Mark to walk to the store is represented by $4 t+1$. The time it took him to walk home is represented by $1-2 t$.

Which expression represents the total time it took Mark to walk to the store and back twice?
(A) $4 t$
(C) $4 t+4$
(B) $8 t$
(D) $-4 t+4$

3 A rectangle has the side lengths shown.

What is the area of the rectangle?
(A) $3 x^{3}+x^{2}+5$
(C) $3 x^{3}+5 x^{2}$
(B) $x+3 x+5$
(D) $3 x^{3}+5 x$

4 The sum of $6 y-1$ and a second expression is $4 y+1$.

Which of the following could be the second expression?

Circle the correct answer from each dropdown menu to complete the statement.

The second expression could be
$-2 y$
$10 y$
$-2 y+2$
$2 y-2$
partially because $\begin{aligned} & -1+1=0 \\ & -1+-1=-2 \\ & 6-4=-2\end{aligned}$.

5 Mouse 1 ran through a maze in $3 c^{2}-9$ seconds. Mouse 2 ran through the same maze in $5 c^{2}+7 c+1$ seconds.

Which expression represents how much longer Mouse 2 took to complete the maze?
(A) $2 c^{2}-8$
(B) $2 c^{2}+7 c+10$
(C) $2 c^{2}+7 c-8$
(D) $-8 c^{2}-7 c-10$

6 Keira simplifies the following expression.

$$
7 x^{2}-6 x(5 x+3)
$$

In Keira's simplified expression, what is the coefficient of x^{2} ?

Write your answer in the box.

